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We report on chaos synchronization between two unidirectionally coupled chaotic systems with multiple
time delays and find both the existence and stability conditions for anticipating, lag, inverse and complete
synchronizations. The method is tested on the famous Ikeda model. Numerical simulations fully support the
analytical approach.
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I. INTRODUCTION

Seminal papers on chaos synchronization[1] have stimu-
lated a wide range of research activity[2]. Synchronization
phenomena in coupled systems have been especially exten-
sively studied in the context of laser dynamics, electronic
circuits, chemical and biological systems[2]. Application of
chaos synchronization can be found in secure communica-
tion, optimization of nonlinear system performance, model-
ing brain activity and pattern recognition phenomena[2].

Due to finite signal transmission times, switching speeds
and memory effects systems with both single and multiple
delays are ubiquitous in nature and technology[3]. Dynam-
ics of multifeedback systems are representative examples of
the multidelay systems. Therefore the study of synchroniza-
tion phenomena in time-delayed systems is of high practical
importance. Prominent examples of such dynamics can be
found in biological and biomedical systems, laser physics,
integrated communications[3]. In laser physics such a situ-
ation arises in lasers subject to two or more optical or
electro-optical feedback. Second optical feedback could be
useful to stabilize laser intensity[4]. Chaotic behavior of
laser systems with two optical feedback mechanisms is stud-
ied in recent works[5]. To the best of our knowledge, chaos
synchronization between the multifeedback systems is yet to
be investigated. Having in mind enormous application impli-
cations of chaos synchronization, e.g., in secure communica-
tion, investigation of synchronization regimes in the multi-
feedback systems is of certain importance.

Recently there have been several reports on synchroniza-
tion in the systems with multiple delays. In[6] the authors
studied unidirectionally coupled discrete systems; papers
[7,8] deal with bidirectionally coupled multiple-delay sys-
tems.

In this paper we investigate synchronization between two
unidirectionally coupled continuous chaotic systems with
mutiple time delays and find both the existence and stability
conditions for different synchronization regimes. We test the
approach on the paradigm Ikeda model. We support the ana-
lytical approach with numerical simulations.

II. GENERAL APPROACH

Consider synchronization between the double-feedback
systems of general form,

dx

dt
= − ax + m1fsxt1

d + m2fsxt2
d, s1d

dy

dt
= − ay + m3fsyt1

d + m4fsyt2
d + Kfsxt3

d, s2d

where f is the differentiable generic nonlinear function.
Throughout this paperxt;xst−td. One finds that under the
condition

K = m1 − m3,m2 = m4, s3d

Eqs.(1) and (2) admit the synchronization manifold

y = xt3−t1
. s4d

This follows from the dynamics of the errorD=xt3−t1
−y

dD

dt
= − aD + m3Dt1

f8sxt3
d + m2Dt2

f8sxt2+t3−t1
d. s5d

Here f8 stands for the derivative off with respect to time and
the derivative should be bounded. The sufficient stability
condition of the trivial solitionD=0 of Eq.(5) can be found
from the Krasovskii-Lyapunov functional approach([3], p.
154) (see also seminal paper[9] on the first application of the
Krasovskii-Lyapunov functional to chaos synchronization in
time-delayed systems). According to[3], the sufficient stabil-
ity condition for the trivial solutionD=0 of time-delayed
equation dD /dt=−rstdD+s1stdDt1

+s2stdDt2
is rstd. us1stdu

+ us2stdu. Thus we obtain that the sufficient stability condition
for the synchronization manifoldy=xt3−t1

(4) can be written
as

a . um3„supf8sxt3
d…u + um2„supf8sxt2+t3−t1

d…u. s6d

Here supf8sxd stands for the supremum off8 with respect to
the appropriate norm.

Analogously one finds both the existence(m2−K=m4,
m1=m3) and sufficient stability fa. um3(supf8sxt3

d)u
+ um2(supf8sxt2+t3−t1

d)ug conditions for synchronization
manifold y=xt3−t2

. One can also find the existence(m3=m1

+K, m2=m4) and sufficient stabilityfa. um3(supf8sxt3
d)u

+ um2 sup(f8sxt2+t3−t1
d)ug conditions for the inverse synchro-

nization[10] manifoldy=−xt3−t1
(we notice that this result is

valid if f is an odd function ofx). Further generalization of
the approach ton-tuple feedback systems, i.e., systems with*Email address: shahverdiev@physics.ab.az
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multiple delays of type(1) and (2) is straightforward. We
underline that a stability condition derived from the
Krasovskii-Lyapunov approach is a sufficient condition: it
assures a high quality synchronization for a coupling
strength estimated from the stability condition, but does not
forbid the possibility of synchronization with smaller cou-
pling strengths. The threshold coupling strength can be esti-
mated by the dependence of the maximal Lyapunov expo-
nentl of the error dynamics onK, i.e., fromlsKd=0 [9].

III. CHAOS SYNCHRONIZATION BETWEEN THE IKEDA
SYSTEMS WITH MULTIPLE DELAYS

In this section of the paper we test the approach presented
in Sec. II on the Ikeda model-paradigm model in chaotic
dynamics. Consider synchronization between the multifeed-
back Ikeda systems,

dx

dt
= − ax + m1 sinxt1

+ m2 sinxt2
, s7d

dy

dt
= − ay + m3 sinyt1

+ m4 sinyt2
+ K sinxt3

, s8d

with positivea1,2 and −m1,2,3,4.
This investigation is of considerable practical importance,

as the equations of the class B lasers with feedback(typical
representatives of class B are solid-state, semiconductor, and
low pressure CO2 lasers[11]) can be reduced to an equation
of the Ikeda type[12].

The Ikeda model was introduced to describe the dynamics
of an optical bistable resonator, plays an important role in
electronics and physiological studies and is well-known for
delay-induced chaotic behavior[13,14]; see also, e.g.
[10,15]. Physically x is the phase lag of the electric field
across the resonator;a is the relaxation coefficient for the
driving x and driveny dynamical variables;m1,2 andm3,4 are
the laser intensities injected into the driving and driven sys-
tems, respectively.t1,2 are the feedback delay times in the
coupled systems;t3 is the coupling delay time between sys-
temsx andy; K is the coupling rate between the driverx and
the response systemy.

We establish that systems(7) and(8) can be synchronized
on

y = xt3−t1
s9d

as the error signalD=xt3−t1
−y for small D under the condi-

tion

K = m1 − m3,m2 = m4 s10d

obey the dynamics

dD

dt
= − aD + m3Dt1

cosxt3
+ m2Dt2

cosxt2+t3−t1
. s11d

It is obvious thatD=0 is a solution of system(11). We notice
that for t3.t1, t3=t1, andt3,t1 (9) is the retarded, com-
plete, and anticipating synchronization manifold[14,10,15],
respectively.

By using the Krasovskii-Lyapunov functional approach
we obtain that the sufficient stability condition for the syn-
chronization manifoldy=xt3−t1

can be written as

a . um3u + um2u. s12d

As Eq.(11) is valid for smallD stability condition(12) found
above holds locally. Conditions(10) are the existence condi-
tions for the synchronization manifold(9) between unidirec-
tionally coupled Ikeda systems(7) and(8) with multiple de-
lays.

We would like to emphasize that conditions(10) and(12)
can be satisfied easily, as the number of parameters exceeds
the number of restrictions. In the cases of parameter mis-
matches (e.g., m2Þm4, m1−KÞm3, the feedback delay
times are different for the driver and driven systems, etc.),
i.e., in the study of nonidentical coupled systems generalized
synchronization[16] between the driver and driven systems
is observed under sufficiently strong driving, when there is
some functional relation between the states of response and
drive, i.e., ystd=F(xstd). One can use the auxiliary system
method to detect generalized synchronization: that is given
another identical driven auxiliary systemz, generalized syn-
chronization betweenx andy is established with the achieve-
ment of complete synchronization betweeny andz. Investi-
gation of generalized synchronization in systems with
multiple time delays is under progress and will be presented
elsewhere.

By investigating corresponding error dynamics we find
that y=xt3−t2

is the synchronization manifold between sys-
tems(7) and (8) with the existencem2−K=m4 and m1=m3
and stability conditionsa. um3u+ um4u.

One can generalize the previous results ton-tuple feed-
back Ikeda systems. Applying the error dynamics approach
to synchronization between the following Ikeda models

FIG. 1. Numerical simulation of the Ikeda model, Eqs.(7) and
(8): the time series of the driverxstd (solid line) and the driven
system ystd (dotted line) for a=5, t1=1, t2=2, t3=3, m1

=−20, m3=−3, m2=m4=−1, andK=−17. Dimensionless units.
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dx

dt
= − ax + m1x sinxt1

+ m2x sinxt2
+ ¯ + mnx sinxtn

,

s13d

dy

dt
= − ay + m1y sinyt1

+ m2y sinyt2

+ ¯ + mny sinytn
+ K sinxtk

, s14d

we find that the existence and sufficent stability conditions,
e.g., for the synchronization manifoldy=xtk−t1

are: m1x−K
=m1y, mnx=mny and a. um1yu+ um2yu+¯ + umnyu, respec-
tively. For the synchronization manifoldy=xtk−t2

, m2x−K

=m2y and mnx=mny are the existence conditions, anda
. um1yu+ um2yu+¯ + umnyu is the sufficient stability condition.

Numerical simulations fully support the analytical results.
Equations(7) and(8) were simulated using the DDE23 pro-
gram[17] in MATLAB 6 . Figure 1 shows the time series of the
driver xstd (solid line) and the driven systemystd (dotted
line) for a=5, t1=1, t2=2, t3=3, m1=−20, m3=−3, m2
=m4=−1, and K=−17. After transients the driven system
shifted t3−t1=2 time units to the right andy=xst−2d (lag
synchronization). In Fig. 2 the time series of the driverxstd
(solid line) and the driven systemystd (dotted line) for a
=5, t1=2, t2=3, t3=1, m1=m3=−2, m2=−18, m4=−1 and
K=−17. After transients the driven system shiftedt3−t2=
−2 time units to the left andy=xst+2d (anticipating synchro-
nization). Figure 3 shows complete synchronization between
x and y for the parametersa=5, t1=1, t2=2, t3=1, m1

FIG. 2. Numerical simulation of the Ikeda model, Eqs.(7) and
(8): the time series of the driverxstd (solid line) and the driven
systemystd (dotted line) for a=5, t1=2, t2=3, t3=1, m1=m3=−2,
m2=−18, m4=−1, andK=−17. Dimensionless units.

FIG. 3. Numerical simulation of systems(7) and (8): complete
synchronization betweeny and x. The parameters area=5, t1=1,
t2=2, t3=1, m1=−20, m3=−3, m2=m4=−1, andK=−17. Dimen-
sionless units.

FIG. 4. Numerical simulation of systems(7) and (8): synchro-
nization betweeny and x. The parameters area=5, t1=1, t2=2,
t3=1, m1=−20, m3=−3, m2=m4=−1, andK=−1000. Dimension-
less units.

FIG. 5. Numerical simulation of systems(7) and(8): the depen-
dence ofy on x. The parameters area=5, t1=1, t2=2, t3=1, m1

=−20, m3=−3, m2=m4=−1, andK=−8. Dimensionless units.
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=−20, m3=−3, m2=m4=−1, andK=−17. In Fig. 4 synchro-
nization betweenx and y is shown fora=5, t1=1, t2=2,
t3=1, m1=−20, m3=−3, m2=m4=−1, and K=−1000. We
emphasize that as the coupling strength estimated from the
stability condition gives a high-quality synchronization, the
synchronization manifold is robust against perturbations of
the coupling strength. But as mentioned above the onset of
synchronization occurs at the coupling stength when the
maximal Lyapunov exponent of the error dynamics vanishes
as function ofK. Our estimations show that for the param-
eters values as in Fig. 3 the threshold value ofK is K
<−9.82, which is(in absolute values) far less thanK=−17.
Figure 5 shows the dependence ofy on x for a=5, t1=1,
t2=2, t3=1, m1=−20, m3=−3, m2=m4=−1, andK=−8.

IV. CONCLUSIONS

We have investigated different synchronization regimes
between two unidirectionally coupled chaotic systems with

multiple delays. We have found the necessary and sufficient
stability conditions for the anticipating, lag, complete, and
inverse synchronization manifolds. We have successfully ap-
plied the approach to the paradigm model in nonlinear
physics—the Ikeda model. This research is of certain practi-
cal importance. It is well known that laser arrays hold great
promise for space communication applications, which re-
quire compact sources with high optical intensities.The most
efficient result can be achieved when the array elements are
synchronized. Additional feedback mechanism could be use-
ful to stabilize nonlinear system’s output, e.g., laser
intensity. Also having in mind different application possi-
bilities of chaos synchronization, synchronization in multi-
feedback systems can provide more flexibility and opportu-
nities in practical applications.
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